
Environment Behavior Models for Scenario Generation
and Testing Automation

Mikhail Auguston

maugusto@nps.edu

James Bret Michael

Department of Computer Science
Naval Postgraduate School
833 Dyer Road, Monterey,

CA 93943-5118, USA
 bmichael@nps.edu

 Man-Tak Shing

shing@nps.edu

ABSTRACT
This paper suggests an approach to automatic scenario generation
from environment models for testing of real-time reactive
systems. The behavior of the system is defined as a set of events
(event trace) with two basic relations: precedence and inclusion.
The attributed event grammar (AEG) specifies possible event
traces and provides a uniform approach for automatically
generating, executing, and analyzing test cases. The environment
model includes a description of hazardous states in which the
system may arrive and makes it possible to gather statistics for
system safety assessment. The approach is supported by a
generator that creates test cases from the AEG models. We
demonstrate the approach with case studies of prototypes for the
safety-critical computer-assisted resuscitation algorithm (CARA)
software for a casualty intravenous fluid infusion pump and the
Paderborn Shuttle System.

Categories and Subject Descriptors
D.2.5 Testing and Debugging: Testing tools

General Terms
Design, Reliability

Keywords
Model-based testing, testing automation, reactive and real time
system testing

1. Introduction

Testing is both a time- and effort-consuming process. Testing
real-time reactive systems is complicated: such systems
continuously interact with their environment and both their inputs
and outputs should satisfy timing constraints. Interactions with the

tester often introduce unacceptable overhead that render the test
results meaningless. Such systems can only be tested via an auto-
mated testing environment with processing characteristics
sufficiently close to the actual operating environment [KS].
Modeling can be used to gain a better understanding of the
environment.
Until recently, most approaches to test automation have been
based on some form of formal specification of the requirements
[Bl, CL, DJ] and/or assertions describing the correct behavior of
program code segments [BK, KA]. Software safety requirements
can only be tested by evaluating the system within the context of
its operating environment. For example, a common approach to
verifying safety requirements involves developing two separate
models: one for the system under test (SUT) and the other for the
environment (or equipment) under its control. The two models are
then exercised in tandem to check whether the simulation ends up
in known hazardous states under normal operating conditions and
under various failure conditions [AL]. Hence, correct modeling of
the environment is as important as the correct analysis of the
system requirements.
It has become a common practice for engineers to analyze system
behaviors from an external point of view using use cases. UML
use case scenarios are written in natural language and focus on the
events and responses between the actors and the system.
Functional requirements can be derived from the events received
by the system and the proper responses generated by the system.

The major paradigms for modeling system behavior are based on
different variations of finite state machines such as statecharts and
message sequence charts in UML. Active research in this area
focuses on different aspects of behavior specification based on
UML statecharts, message sequence diagrams, or other types of
extended finite state machines, like timing automata [HL] or Petri
nets. In [WP], Wang and Parnas proposed to use trace assertions
to formally specify the externally observable behavior of a
software module and presented a trace simulator to symbolically
interpret the trace assertions and simulate the externally
observable behavior of the module specified. Their approach is
based on algebraic specifications and term rewriting techniques
and is only applicable to non-real-time applications. In [ABK],
Alfonso et al. presented a formal visual language for expressing
real-time system constraints as event scenarios (events and
responses) and provided a tool to translate the scenarios into
observer timed automata, which can be used to study properties of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
A-MOST’05, May15–16, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-115-5/00/0004…$5.00.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Environment Behavior Models for Scenario Generation and Testing
Automation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer Science,833 Dyer
Road,Monterey,CA,93943-5118

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
environment in Online Proceedings of the First International Workshop on Advances in Model-Based
Software Testing (A-MOST’05), The 27th International Conference on Software Engineering ICSE05,
2005, St. Louis, 2005

14. ABSTRACT
This paper suggests an approach to automatic scenario generation from environment models for testing of
real-time reactive systems. The behavior of the system is defined as a set of events (event trace) with two
basic relations: precedence and inclusion. The attributed event grammar (AEG) specifies possible event
traces and provides a uniform approach for automatically generating, executing, and analyzing test cases.
The environment model includes a description of hazardous states in which the system may arrive and
makes it possible to gather statistics for system safety assessment. The approach is supported by a
generator that creates test cases from the AEG models. We demonstrate the approach with case studies of
prototypes for the safety-critical computer-assisted resuscitation algorithm (CARA) software for a casualty
intravenous fluid infusion pump and the Paderborn Shuttle System.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the formal model of the system under analysis via model checking
and run-time verification. While there are a lot of similarities
between the approach presented in [ABK] and ours, the [ABK]
approach is effective for modeling static environments (with fixed
scenarios) where as ours, which is based on event grammar, is
more effective in specifying dynamic environments with an
arbitrary number of actors (and concurrent events).

A major feature of our approach is the notion of event trace as a
formal model of behavior. Event grammars are one of the possible
frameworks to utilize this notion. They are text-based, have a
smaller semantic distance from the use case scenarios than the
state machines, and are well suited to model environments
described via use case scenarios. Event grammars are convenient
in specifying dynamic environments with an arbitrary number of
actors (and concurrent events), whereas state machines are
effective for modeling static environments (with predetermined
numbers of actors).

Behavior models based on event grammars can be designed not
only for the environment, but for the SUT as well, and used for
run-time verification and monitoring. This technique may be used
to automate test-result verification. Details can be found in
previously published papers on event grammars for program
testing, monitoring, and debugging automation [A1], [A2], and
[AJ] and will not be discussed in this paper.

Context-free grammars have been used for test generation, in
particular, to check compiler implementation, such as in [MK].
[Ma] provides an outlook in the use of enhanced context-free
grammars for generation of test data.

2. Event Traces and Event Grammars

Our approach focuses on the notion of event, which is any
detectable action in the environment that could be relevant to the
operation of the SUT. A keyboard button pressed by the user, a
group of alarm sensors triggered by an intruder, a particular stage
of a chemical reaction monitored by the system, and the detection
of an enemy missile are examples of events. An event usually is a
time interval, and has a beginning, an end, and duration. An event
has attributes, such as type and timing attributes.

Two basic relations are defined for events: precedence
(PRECEDES) and inclusion (IN). Two events may be ordered in
time, or one event may appear inside another event. The behavior
of the environment can be represented as a set of events with
these two basic relations defined for them (event trace). The
basic relations define a partial order of events. Two events are not
necessarily ordered, that is, they can happen concurrently.
Usually event traces have a specific structure (or constraints) in a
given environment.
The structure of possible event traces can be specified by an event
grammar. Here identifiers stand for event types, sequence
denotes precedence of events, (…|…) denotes alternative, (* …*)
means repetition zero or more times of ordered events, […]
denotes an optional element, {a, b} denotes a set of two events a
and b without an ordering relation between them, and {*…*}
denotes a set of zero or more events without an ordering relation
between them.

The rule A: B C means that an event of the type A contains (IN
relation) ordered events of types B and C, correspondingly
(PRECEDES relation). Both relations imply partial order and are
transitive, noncommutative, nonreflexive, and satisfy
distributivity constraints, like

A IN B and B PRECEDES C implies A PRECEDES C

Attributed event grammars (AEG) are intended to be used as a
vehicle for automated random event-trace generation. It is
assumed that the AEG is traversed top-down and left-to-right and
only once to produce a particular event trace. Randomized
decisions about what alternative to take and how many times to
perform the iteration should be made during the trace generation.
The major difference with traditional attributed context-free
grammars is in the nature of objects defined by the grammar:
instead of sequences of symbols, AEG deals with event traces,
sets with two basic relations, or directed acyclic graphs.
The event grammar defines a set of possible event traces – a
model of behavior for a certain environment. The purpose is to
use it as a production grammar for random event trace generation
by traversing grammar rules and making random selections of
alternatives and numbers of repetitions. All generated concurrent
events within sets start simultaneously. The DELAY(t) construct
may be used to indicate delays in the event beginning. For
example,
{ DELAY(Rand(0..10)) A, DELAY(Rand(0..10)) B }.
Each event type may have a different attribute set. An event
grammar can contain attribute evaluation rules similar to the
traditional attribute grammar [Pa]. Attribute values are evaluated
during the AEG traversal. The /action/ is performed immediately
after the preceding event is completed.

Example.
The interface with the SUT can be specified by an action that
sends input values to the SUT. This may be a subroutine in a
common programming language like C that hides the necessary
wrapping code. In the following example of specifying a variety
of use case scenarios for a simple calculator, we suppose that the
SUT should receive a message about the button pressed by the
user corresponding to the appropriate wrapper subroutine:
enter_digit(), enter_operation(), and show_result(), (Fig.
1).

Use_calculator Calculator_program
enter_digit()

enter_operator()
show_result()

Executable Environment
Model SUT

Fig. 1. The environment model for the calculator scenario

Some event types in this model have attributes associated with
them.

Perform_calculation result
Enter_number digit, value
Enter_operator operation

Use_calculator: (* Perform_calculation *);

Perform_calculation:
Enter_number Enter_operator Enter_number

WHEN (Enter_operator.operation == ‘+’)

/ Perform_calculation.result =
Enter_number[1].value +
Enter_number[2].value; /

ELSE
/ Perform_calculation.result =

Enter_number[1].value −
Enter_number[2].value; /

 [P(0.7) Show_result];

The WHEN clause provides for conditional action,
Enter_number[1] refers to the first occurrence of event in the
rule Perform_calculation, and correspondingly,
Enter_number[2] refers to the second occurrence. In this
example all event attribute evaluation can be accomplished at the
generation time. The optional clause Show_result will be
generated according to the probability P(0.7) assigned to it. The
value of attribute Perform_calculation.result can be used as a
test oracle for this particular part of the test case.

Enter_number:
/ Enter_number.value= 0; /
(* Press_digit_button

/ Enter_number.digit = RAND[0..9];
 Enter_number.value =

Enter_number.value * 10 +
Enter_number.digit;

enter_digit(Enter_number.digit); / *) (1..6);

The action /Enter_number.digit = RAND[0..9];/ assigns a
random value from the interval 0..9 to the digit attribute. Each
time the rule for Enter_number event is traversed, the number
of iterations will be selected at random from interval 1..6. The
traversal of AEG rules is performed top-down and from left to
right, and for each iteration the attributes Enter_number.digit
and Enter_number.value are recalculated. The action
enter_digit(Enter_number.digit) feeds the corresponding
value to the SUT.

Enter_operator:
(P(0.5) / enter_operation(‘+’);

Enter_operator .operation= ’+’; / |
 P(0.5) / enter_operation(‘-’);

Enter_operator .operation= ’-’; /) ;

When traversing this rule, the choice of action sending the
operator symbol to SUT is made based on the probability P(prob)
assigned to the corresponding alternative.

Show_result: /show_result();/ ;

The event Show_result, when generated, will trigger a call to
the wrapper subroutine that sends a message to the SUT.
We can generate a large number of Use_calculator scenarios
(event traces) satisfying this AEG and each event trace will
satisfy the constraints imposed by the event grammar. The event
trace generated from the AEG traversal contains both events and
actions that should be performed at corresponding time moments.
The actions (wrapper subroutine calls in this example) can be
extracted from the event trace and assembled into test-driver code
which will perform those actions according to the timing
attributes calculated during the trace generation. Thus, the event

trace is used as a “scaffold” for test driver generation. Separation
of the generation phase from test execution is essential for the
performance of the generated test driver: event selection and
attribute evaluation can be performed at generation time, with test
drivers containing only wrapper calls to interact with the SUT,
that is, the “scaffolding” is removed.

3. Case Study I: CARA Infusion Pump

CARA is a safety-critical software-intensive system system devel-
oped by the Walter Reed Army Institute of Research to improve
life support for trauma cases and military casualties [W1]; it has
been used as a case study by several software engineering
research groups [AA]. The main responsibilities of the CARA
system represented in this model include:
• To monitor a patient’s blood pressure.
• To control a high-output patient resuscitation infusion pump.

3.1 The Environment Model
Global parameters:

MINBP minimal blood pressure
BR patient’s bleeding rate
RR initial pump rotation rate
V initial pump voltage
VRR pump voltage to rotation rate coefficient
RRF pump rotation rate to flow coefficient
REMF pump rotation rate to EMF voltage
 coefficient
p1 probability of occlusion appearance
p2 probability of occlusion disappearance

Event attributes (all values are of integer type, constants True
and False stand for 1 and 0, correspondingly):

Patient blood_pressure, volume, bleeding_rate
Pump rotation_rate, voltage, EMF_voltage,

 flow, occlusion_on

The environment model:
CARA_environment: { Patient, LSTAT, Pump };

The model is represented by three concurrent threads of events:
Patient, LSTAT and Pump (Fig. 2). Since each of these events
is an iteration with 1 sec periodic rate (see the corresponding rule
definitions below), the synchronization is simply implied by this
timing constraint: all shared attribute values are updated every 1
sec. Since the generated test driver is a sequential C program, this
eliminates the data race concerns.

CARA control
software

send_arterial_blood_pressure()

CARA Environment
Model

SUT

Patient

LSTAT

Pump
set_pump_voltage()

send_plugged_in()
send_pump_EMF_voltage()

send_occlusion_on()
send_occlusion_off()

Fig. 2. The CARA environment model

Patient:

/ Patient.bleeding_rate= BR; /
 (* / Patient.volume +=

ENCLOSING
CARA_environment -> Pump.Flow –
Patient.bleeding_rate;

Patient.blood_pressure =
Patient.volume/50 – 10;

 Patient.bleeding_rate += RAND[-9..9]; /
 WHEN (Patient.blood_pressure > MINBP)

Normal_condition
 ELSE

Critical_condition
 *) [EVERY 1 sec];

This simple model of Patient behavior sets dependencies on the
Pump behavior, while allowing random fluctuation of the
patient’s bleeding rate between –9 and 9 ml/sec. The construct
ENCLOSING CARA_environment -> Pump provides for the
event Patient to refer to event Pump, which is not within scope
of this rule, but is available via the parent event
CARA_environment. This reference mechanism is convenient
for event-attribute propagation over the derivation tree. The
[EVERY 1 sec] clause guides the event trace generation with the
desired event time stamps. For testing and safety assessment
purposes, the event Critical_condition within the Patient
event is of special interest.

LSTAT: Power_on / send_power_on(); /
 (* / send_arterial_blood_pressure(

ENCLOSING CARA_environment->
Patient.blood_pressure); /

*) [EVERY 1 sec];

LSTAT is a simple model of the part of environment (the
stretcher) responsible for monitoring the patient’s blood pressure
measurements.

Pump: Plugged_in
/ send_plugged_in(); Pump.rotation_rate = RR;

 Pump.voltage = V; /
{ Voltage_monitoring, Pumping };

Voltage_monitoring:
(* / ENCLOSING Pump.EMF_voltage =

 ENCLOSING Pump.rotation_rate *
REMF;

 send_pump_EMF_voltage(
ENCLOSING Pump.EMF_voltage); /

*) [EVERY 5 sec];

Pumping:
(* / ENCLOSING Pump. rotation_rate =

ENCLOSING Pump. voltage * VRR;
ENCLOSING Pump. flow =

ENCLOSING Pump. rotation_rate * RRF;
/

 CATCH set_pump_voltage(
ENCLOSING Pump.voltage)

Voltage_changed
[P(p1) Occlusion

 / ENCLOSING Pump.occlusion_on = True;
 send_occlusion_on(); /]

WHEN (ENCLOSING Pump.occlusion_on)
[P(p2) /

 ENCLOSING Pump.occlusion_on =False;
send_occlusion_off(); /]

*) [EVERY 1 sec];

The Pump event in turn contains two independent concurrent
threads. The Voltage_monitoring event thread is responsible
for sending the pump back EMF voltage measurements to the
SUT every 5 seconds. The Pumping event thread is responsible
for updating the rotation rate and the IV flow rate based on the
voltage set by the SUT. The CATCH construct in the Pumping
event thread represents an external event of receiving an input
from the SUT. It is implemented as a function
set_pump_voltage(ENCLOSING Pump.voltage) call,
which returns a True value and adjusts its parameter when SUT
has issued corresponding output. If there is no input from the SUT
at the moment of CATCH check, the event stream proceeds to the
next action. This rule demonstrates the ability of AEG to specify
so-called adaptive test cases [HU] in which the input applied at a
step depends upon the output sequence that has been observed. As
mentioned above, the attribute Pump.flow value is shared with
the Patient event thread. The synchronization is achieved by the
identical periodicity of both iterations. This rule also simulates
random occurrence of the Occlusion event.
NASA-STD-8719.13A [So] defines risk as a function of the
possible frequency of occurrence of an undesired event, the
potential severity of resulting consequences, and the uncertainties
associated with the frequency and severity.

The environment model can contain a description of hazardous
states in which the system could arrive, and which could not be
derived from the SUT model itself. For example, the
Critical_condition event will occur in certain scenarios
depending on the SUT outputs received by the test driver and
random choices determined by the given probabilities. If we run a
large enough number of (automatically generated) tests, the
statistics gathered gives some approximation of the risk of
entering the hazardous state, and a precise measurement of the
time taken (on the average or worst-case) for the caregiver to
intervene and correct the situation. This becomes a very
constructive process of performing experiments with SUT
behavior within the given environment model.
By experimenting with increasing or decreasing parameters such
as BR, p1, and p2, we can conclude what impact those parameters
have on the probability of hazardous outcome, and identify
thresholds for SUT behavior in terms of those values.

4. Case Study II: Paderborn Shuttle System

The following model specifies part of the Paderborn Shuttle
System behavior as presented in [PA] (Fig. 3).

Shuttle monitor
software

Shuttle Environment
Model

SUT

send_offer()
send_notification()

Shuttle
order()

confirmation()

Fig. 3. The Shuttle environment model
Global parameters:

ShuttleNum number of shuttles in the model
StationNum number of stations
InitAccount initial account
MaxLimit the threshold requiring shuttle

maintenance
TransitFee the fee for a transit between stations
Wear the wear increment after passing from

station to station
Payment transaction fee collected by the

shuttle
MaintenanceFee fee for performing shuttle

maintenance
Event attributes:

Shuttle id, at_station, account, start,
destination, accepted, limit, retired

The environment model:
Shuttle_system: {* Shuttle *} (1..ShuttleNum);

The behavior of the Shuttle System is represented as a set of
parallel Shuttle threads. The SUT in this example is software that
monitors the Shuttle System, sends orders and assigns tasks to
shuttles.

Shuttle:
/ Shuttle.id = Unique_num();

 Shuttle.at_station = Rand(1..StationNum);
 Shuttle.account = InitAccount;
 Shuttle.limit = 0;
 Shuttle.retired = false; /
 (* WAIT order(Shuttle.start,

 Shuttle.destination)
 WHEN (Shuttle.start == Shuttle.at_station)

 (/ send_offer(Shuttle.id,
 calculate(Shuttle.start,
 Shuttle.destination); /
 WAIT confirmation(Shuttle.accepted)
 WHEN (Shuttle.accepted) Move
)
 *);

The Shuttle life cycle starts with setting some attribute values.
After this it waits for an order from the SUT. If the shuttle is
located on the start station for this order, the shuttle sends its bid
to the SUT and waits for confirmation. If the bid is accepted, the
shuttle proceeds with the movement. The WAIT construct
represents an external event generated by the SUT. It halts the
corresponding event thread until the expected input from the SUT
is received, as opposed to the CATCH construct in the previous
example, which just checks for the presence of input and if not yet
received, proceeds with the next event or OTHERWISE clause.

Move:
WHEN (ENCLOSING Shuttle.limit > MaxLimit)
 Maintenance
/ ENCLOSING Shuttle. at_station =
 next_station(ENCLOSING

Shuttle.at_station,
 ENCLOSINGShuttle.destination);

 ENCLOSING Shuttle.account -= TransitFee;
 ENCLOSING Shuttle.limit += Wear;
 send_notification(ENCLOSING Shuttle.id,
 ENCLOSING Shuttle.at_station); /
CheckAccount
WHEN (ENCLOSING Shuttle. at_station ==
 ENCLOSING Shuttle.Destination)

 /ENCLOSING Shuttle. account += Payment;/
 ELSE Move;

The Move event represents the activities of the shuttle during
transportation. It checks to see if maintenance is needed, and
updates its at_station attribute using the internal function
next_station, as well as its account and limit attributes using
the constants TransitFee and Wear. It sends a notification to
the SUT each time it “arrives” at a station, and checks to see if its
account is depleted. It then checks to see if it has reached its
destination, and increases its account by the constant Payment
if it reaches its destination. Otherwise, it will call Move
recursively to continue its journey.

Maintenance:
/ENCLOSING Shuttle.account -=

 MaintenanceFee;
ENCLOSING Shuttle.limit = 0; /

CheckAccount;

CheckAccount:
WHEN (ENCLOSING Shuttle. Account <= 0)

(/ ENCLOSING Shuttle.retired = True; /
BREAK);

The Maintenance event decrements the shuttle’s account by
the constant MaintenanceFee and resets its limit attribute to
zero. The CheckAccount event retires the shuttle by breaking
the enclosing iteration in the Shuttle rule if the account is
depleted.

5. Automatic Test Generation

For the purpose of scenario (and corresponding test case)
generation, the AEG approach has several useful features, in
particular:

• It is based on a precise and expressive behavior model in
terms of an event trace with precedence and inclusion re-
lations, well suited to capture hierarchical and concurrent
behaviors. Since an event may be shared by other events,
the model can represent synchronization events as well.

• The control structure suggested by the event grammar
notation (sequence, alternative, iteration, concurrent event
set), and the top-down, left-to-right order of traversal seems

to be intuitive and close to the traditional imperative
programming style.

• Data flow of attributes is integrated with the control flow
(i.e., event trace), and AEG notation provides for ease of
navigation within the derivation tree (e.g., the
ENCLOSING event construct, like in ENCLOSING
CARA_environment -> Patient.blood _pressure).

The first prototype of an automated test generator based on
attributed event grammars has been implemented at NPS. It takes
an AEG and generates a test driver in C.
Some highlights:

• Parallel event threads (for sets, like {A, B}) are implemented
by interleaving events/actions within them.

• All loops in AEG are unfolded either using explicit iteration
guards, or by assuming a random number of iterations.
Recursion, if used, can be dealt with in a similar fashion.

• Attributes are evaluated mostly at generation time, but those
dependent on SUT outputs (on CATCH or WAIT clauses)
are postponed until run time. Certain parts of the generated
event trace may depend on those attribute values (e.g.,
because the delayed attribute participates in the WHEN
clause); in this case, both alternatives for the expected trace
segment are generated but protected by Boolean flags, so
that at the test run time only the alternative for which the
guard is enabled will be executed.

• The generated driver contains only simple assignment
statements and C subroutine calls for interfacing with the
SUT, guarded by simple flags, making it efficient enough
and usable for real-time SUT testing.

6. Conclusions

This paper suggests an approach to automatic scenario generation
from environment models for testing of real-time reactive systems
based on attributed event grammar. The main advantages of the
suggested approach may be summarized as follows:

• Environment models specified by attributed event grammars
provide for automated generation of a large number of
pseudo-random test drivers.

• The generated test driver is efficient and could be used for
real-time test drivers.

• It addresses the regression testing problem–generated test
drivers can be saved and reused. We expect that envi-
ronment models will be changed relatively seldom unless
significant errors in the requirements are discovered during
testing.

• AEG is well structured, hierarchical, and scalable.

• The environment model may contain events which represent
hazardous states of the environment (e.g., patient’s
Critical_condition in CARA). Experiments with the SUT
embedded in the environment model provide a constructive
method for quantitative and qualitative assessment of soft-
ware safety. Such an approach is needed for identifying,
confirming, and mitigating hazards, such as those arising

from software faults in the Abbott Lifecare PCA Plus II
Infusion pump that resulted in loss of life [EC].

• Different environment models for different purposes can be
designed, such as for testing extreme scenarios by increasing
probabilities of certain events, or for load testing. The
environment model itself is an asset and could be reused.

• Environment models can be designed early on, before the
system design is complete, and can be run as environment
simulation scenarios. Event traces generated from the AEG
model represent examples of SUT interaction with the
environment, and are in fact use cases, that could be useful
for requirements specification and other prototyping tasks.

7. Acknowledgements

The research reported in this article was funded in part by a grant
from the U.S. Missile Defense Agency. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government.

REFERENCES
[AA] Alur, R., Arney, D., Gunter, E., Lee, I. Nam, W., and Zhou,
J., Formal specifications and analysis of the computer assisted
resuscitation algorithm (CARA) Infusion Pump Control System,
J. Software Tools for Technology Transfer 5, 4 (2004), pp. 308-
319.

[ABK] Alfonso, A., Braberman, V., Kicillof, N., and Olivero, A.
Visual timed event scenarios, in Proc. 26th Int. Conf. on Software
Engineering, ACM Press (Edinburgh, Scot., May 2004), pp. 168-
177.

 [A1] Auguston, M. A language for debugging automation, in
Chang, S. K., ed., Proc. Sixth Int. Conf. on Software Engineering
& Knowledge Engineering, Skokie, Ill., Knowledge Systems Inc.,
June 1994, pp. 108-115.

[A2] Auguston, M. Lightweight semantics models for program
testing and debugging automation, in Proc. 7th Monterey Work-
shop: Modeling Software System Structures in a Fastly Moving
Scenario, (Santa Margherita Ligure, Italy, June 2000), pp. 23-31.

[AJ] Auguston, M., Jeffery, C., and Underwood, S. A framework for
automatic debugging, in Proc. 17th Int. Conf. on Automated Software
Engineering, ACM Press (Edinburgh, Scot., Sept. 2002), pp. 217-
222.

[AL] Atchison, B. M. and Lindsay, P. A safety validation of -
embedded control software using Z animation, in Proc. 5th Int.
Symposium on High Assurance Systems Engineering, IEEE
(Albuquerque, N.M., Nov. 2000), pp. 228-237

[BK] Boyapati, C., Khurshid, S., and Marinov, D., Korat: Auto-
mated testing based on Java predicates, in Proc. Int. Symposium
on Software Testing and Analysis, ACM Press (Rome, Italy, July
2002), pp. 123-133.

[Bl] Blackburn, M. R. Using models for test generation and
analysis, in Proc. 17th Digital Avionics Systems Conf., Vol. 1,
IEEE (Bellevue, Wash., Oct..1998), pp. C45/1-C45/8.

 [CL] Crowley, J. L., Leathrum, J. F., and Liburdy, K. A. Issues in
the full scale use of formal methods for automated testing, in
Proc. ACM SIGSOFT Int. Symposium on Software Testing and
Analysis, ACM SIGSOFT Software Engineering Notes 21, 3
(1996), pp. 71-77.

[DJ] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C.
M., Patton, G. C., and Horowitz, B. M. Model-based testing in
practice, in Proc. Int. Conf. on Software Engineering, (Los
Angeles, Calif., May 1999), pp. 285-294.

[EC] ECRI. Hazard Report. Abbott PCA Plus II - Patient con-
trolled analgesic pumps prone to misprogramming, resulting in
narcotic overinfusions, J. Health Devices 26 (1997), pp. 389-391.

 [HL] Hong, H. S. and Lee, I. Automatic test generation from
specifications for control-flow and data-flow coverage criteria, in
Proc. Monterey Workshop, Monterey, Calif.: Naval Postgraduate
School (Monterey, Calif., June 2001), pp.230-246.

[HU] Hierons, R. M. and Ural, H. Concerning the ordering of
adaptive test sequences, in Proc. 23rd IFIP Int. Conf. on Formal
Techniques for Networked and Distributed Systems, (Berlin,
Germany, Sept. 2003), Berlin: Springer,, Lecture Notes in Com-
puter Science, Vol. 2767, pp. 289-302.

[KA] Korel, B. and Al-Yami, A. M. Assertion-oriented auto-
mated test data generation, in Proc. 18th Int. Conf. on Software
Engineering, IEEE (Berlin, Germany, Mar. 1996), pp. 71-80.

[KS] Kreiner, C., Steger, C., and Weiss, R. Improvement of con-
trol software for automatic logistic systems using executable

environment models, in Proc. 24 th Euromicro Conf., Vol. 2, IEEE
(Vasteras Sweden, Aug. 1998), pp. 919-923.

 [Ma] Maurer, P. Generating test data with enhanced context-free
grammars, IEEE Software, July 1990, pp.50-55

[MK] McKeeman, W. M. Differential testing for software, Digi-
tal Tech. J. 10, 1 (1998), pp. 100-107.

[Pa] Paakki, J. Attribute grammar paradigms - A high-level
methodology in language implementation, ACM Computing Sur-
veys 27, 2 (June 1995), pp. 196-255.

[PA] Paderborn Shuttle System Case Study at

 http://wwwcs.upb.de/cs/ag-schaefer/CaseStudies/ShuttleSystem/

[So] Software Safety, NASA Technical Standard. NASA-STD-
8719.13A, Sept. 1997,
http://satc.gsfc.nasa.gov/assure/nss8719_13.html.

[W1] WRAIR Dept. of Resuscitative Medicine, Narrative
Description of the CARA software, proprietary document,
WRAIR, Silver Spring, Md., Jan 2001.

[WP] Wang, Y. and Parnas, D. Simulating the behavior of
software modules by trace rewriting, IEEE Transactions on
Software Engineering 20, 10 (Oct. 1994), pp. 750-759.

http://satc.gsfc.nasa.gov/assure/nss8719_13.html

	D.2.5 Testing and Debugging: Testing tools
	Introduction
	Event Traces and Event Grammars
	Case Study I: CARA Infusion Pump
	To monitor a patient’s blood pressure.
	To control a high-output patient resuscitation infusion pump
	The Environment Model

	Case Study II: Paderborn Shuttle System
	Automatic Test Generation
	Conclusions
	7. Acknowledgements
	REFERENCES

